Composite Gaussian process models for emulating expensive functions
نویسندگان
چکیده
منابع مشابه
Using Gaussian Processes to Optimize Expensive Functions
The task of finding the optimum of some function f(x) is commonly accomplished by generating and testing sample solutions iteratively, choosing each new sample x heuristically on the basis of results to date. We use Gaussian processes to represent predictions and uncertainty about the true function, and describe how to use these predictions to choose where to take each new sample in an optimal ...
متن کاملNonstationary Covariance Functions for Gaussian Process Regression
We introduce a class of nonstationary covariance functions for Gaussian process (GP) regression. Nonstationary covariance functions allow the model to adapt to functions whose smoothness varies with the inputs. The class includes a nonstationary version of the Matérn stationary covariance, in which the differentiability of the regression function is controlled by a parameter, freeing one from f...
متن کاملGaussian Process Dynamical Models
This paper introduces Gaussian Process Dynamical Models (GPDM) for nonlinear time series analysis. A GPDM comprises a low-dimensional latent space with associated dynamics, and a map from the latent space to an observation space. We marginalize out the model parameters in closed-form, which amounts to using Gaussian Process (GP) priors for both the dynamics and the observation mappings. This re...
متن کاملGaussian Process Topic Models
We introduce Gaussian Process Topic Models (GPTMs), a new family of topic models which can leverage a kernel among documents while extracting correlated topics. GPTMs can be considered a systematic generalization of the Correlated Topic Models (CTMs) using ideas from Gaussian Process (GP) based embedding. Since GPTMs work with both a topic covariance matrix and a document kernel matrix, learnin...
متن کاملGaussian Process Morphable Models
Models of shape variations have become a central component for the automated analysis of images. An important class of shape models are point distribution models (PDMs). These models represent a class of shapes as a normal distribution of point variations, whose parameters are estimated from example shapes. Principal component analysis (PCA) is applied to obtain a low-dimensional representation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2012
ISSN: 1932-6157
DOI: 10.1214/12-aoas570